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1 Introduction

The development of advanced microarray
technology over the past two decades con-
stitutes a revolution in genomics. To-
day, microarrays can measure expression
levels for thousands of genes simultane-
ously, yielding data with the potential to
shed light on many areas of biology and
medicine, from the cell cycle to physio-
logical development to disease mechanisms.
The main challenge for researchers lies in
drawing meaningful conclusions from the
vast quantities of microarray data that they
collect.

Clustering, one of the key steps in mak-
ing sense of microarray data, divides the
set of genes being studied into smaller sets
of genes with similar expression patterns,
where the definition of “similar” varies from
algorithm to algorithm. According to the
widely-accepted “guilt by association” prin-
ciple (the validity of which is supported by
[45]), genes that are co-expressed are very
often co-regulated as well. Therefore, by re-
vealing which genes are co-expressed, clus-
tering assists researchers in discovering and
understanding the regulatory mechanisms
of the cells in question.

Microarray experiments can be divided
into two main types: static and time se-
ries. In static experiments, gene expression
measurements are taken one time each from
a number of samples. For example, in a
common type of static microarray experi-
ment, researchers studying the mechanism
of a particular disease measure and com-
pare gene expression levels in tissue sam-
ples taken from individuals with and with-
out the disease [41].

In time series (or temporal) experi-
ments, on the other hand, expression lev-
els are measured in a single sample at a
number of points in time. Most of the
applications of time series microarray ex-
periments can be placed into one of four
broad categories. The first is discovering
the dynamics behind various biological sys-
tems, such as the cell cycle and the cir-
cadian clock [1, 3]. The second category
is development; by collecting and analyz-
ing time series data during a particular de-
velopmental process, researchers can learn
about the genes controlling that process.
Interesting examples of processes that have
been studied in this way include nervous
system development and stem cell differen-
tiation [1, 41]. Third, temporal microarray
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experiments can shed light on disease pro-
gression by revealing the genetic changes
underlying observable symptoms [1,3]. Re-
searchers have applied microarray technol-
ogy to study diseases such as Alzheimer’s
[18], HIV [37], and cancer [44]. Fourth and
finally, researchers can use time series ex-
periments to determine genetic responses to
various conditions of interest, such as gene
knockouts, stress conditions, and drug ad-
ministration [17,41].

Temporal expression data clearly has
the potential to generate a great deal of
biological knowledge. For researchers hop-
ing to start with raw time series microarray
data and reach the type of useful results
described above, data analysis constitutes
the most challenging step. In particular,
there is little to no consensus in the liter-
ature about the best method for clustering
time series microarray data despite the fact
that hundreds of algorithms have been de-
veloped for the task. Before going into the
details of such algorithms, we will briefly
describe the general categories of clustering
procedures.

2 Clustering Approaches

The goal of clustering is to group simi-
lar data points together. Accordingly, any
clustering algorithm can be characterized
by the notion of similarity that it employs.
As described in [50], clustering algorithms
can be divided into two main types: dis-
criminative and generative. Discriminative
algorithms define a pairwise similarity func-
tion and then apply that function to cluster
similar data points together. Generative al-
gorithms, by contrast, assume that the data
is generated by a finite set of models. Such
algorithms use the data to learn the param-
eters for those underlying models and then
cluster points generated by the same model
together.

Below, we review the application of

both types of algorithms to the analysis of
time series microarray data and consider
the advantages and disadvantages of each
approach.

3 Discriminative Algorithms

In the specific case of clustering temporal
microarray data, the objects being grouped
together are the expression profiles for indi-
vidual genes. At the root of any discrimina-
tive algorithm, then, is a function measur-
ing similarity between two expression pro-
files. These similarity functions range from
straightforward pointwise distance metrics
to more complex functions based on general
features extracted from the profile.

3.1 Pointwise Similarity

Most traditional clustering algorithms
such as hierarchical, k-means, and self-
organizing maps fall into this category. In
essence, these algorithms treat expression
profiles with n time points as n-dimensional
vectors and apply distance or correlation
functions to those vectors in order to quan-
tify the similarity between two profiles.
Euclidean distance, Manhattan distance,
and the Pearson correlation coefficient are
among the most common functions chosen
[10].

We can subdivide pointwise discrimina-
tive algorithms even further based on how
they apply the defined pointwise similarity
function. Some algorithms, including most
hierarchical methods, work in an agglom-
erative way by building clusters up from
individual data points and smaller clusters
[7]. Others, most notably k-means and self-
organizing maps, work divisively by break-
ing the set of all data points down into
smaller clusters [6].

Pointwise discriminative algorithms
have been successfully applied to cluster
static microarray data [7]. Furthermore,
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they are generally simple to understand and
implement. As a result, these algorithms
were the ones chosen in the earliest time
series microarray experiments [12].

Unfortunately, despite their relative
simplicity, pointwise discriminative algo-
rithms are not appropriate for the analysis
of temporal microarray data. The validity
of these algorithms relies on the assumption
that the expression measurements taken for
a given gene are independently and identi-
cally distributed [31]. This assumption is
reasonable for static data taken from dif-
ferent samples; however, it certainly does
not hold for temporal data, in which nearby
time points are strongly correlated with one
another [3].

To phrase the same fundamental issue
in another way, pointwise discriminative al-
gorithms ignore the temporal content of
time series data. The order of expression
measurements is irrelevant for the purpose
of these algorithms. Clearly, the analysis of
time series expression data calls for meth-
ods that make effective use of temporal in-
formation rather than disregarding it.

3.2 Feature-Based Similarity

Feature-based discriminative algorithms
compare two genes not based on the raw
expression data—as is the case with point-
wise algorithms—but rather based on a
set of features extracted from that data.
Essentially, these methods first transform
each gene expression vector into a feature
vector to which they then apply the tra-
ditional pointwise clustering methods de-
scribed above.

Ideally, the feature vector should en-
capsulate the most important aspects of
an expression profile. The challenge in de-
signing a feature-based algorithm, then, is
choosing which features to extract. In [11],
Di Camillo et al. proposed a method in
which each of a gene’s expression measure-

ments is replaced by either −1, +1, or 0
depending on whether the gene is under-
expressed, over-expressed, or not differen-
tially expressed relative to its baseline ex-
pression level.

Phang et al. [34] took a different ap-
proach, choosing to transform each gene
expression vector into a trajectory vector
in which each term indicates the direc-
tion of change (either increase, decrease, or
flat) between two consecutive time points
in the original vector. Other researchers
have since proposed extensions to their al-
gorithm. For instance, Kim and Kim [23]
extracted not only a sequence of first-order
differences but also a sequence of second-
order differences (convex, concave, or no
change) from the original gene expression
vectors. They then combined the two se-
quences into a single feature vector.

Phan et al. [33] proposed a method
combining aspects of both Di Camillo’s and
Phang’s approaches. In their procedure,
the feature vector contains expression levels
relative to a baseline value (up-modulated,
no change, or down-modulated) as well as
differences in pairs of successive expression
measurements (steep rise, moderate rise, no
change, moderate fall, or steep fall).

StepMiner [39] and SlopeMiner [29]
provide two final examples of feature-based
algorithms. Both methods rely on the
assumption that transitions in expression
level are the defining characteristics of an
expression profile. In the StepMiner al-
gorithm, each expression vector is reduced
to a simple binary pattern (up, down, up-
down, down-up, or none) and, depend-
ing on the assigned pattern, the one or
two times corresponding to the transitions.
SlopeMiner extends StepMiner to allow for
the identification of gradual transitions in
expression level rather than just sharp ones.

There are a number of compelling ad-
vantages to feature-based discriminative al-
gorithms. For one, feature-based algo-
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rithms are often faster than other cluster-
ing methods because the actual clustering
step is performed not on the original expres-
sion vectors but on the simpler feature vec-
tors [19]. Moreover, because the feature ex-
traction step usually reduces noise present
in the raw microarray data, feature-based
methods tend to be more robust than al-
gorithms that operate directly on the orig-
inal untransformed data [42]. Most impor-
tantly, feature-based approaches are flexi-
ble; they allow researchers to reduce a com-
plex expression profile down to those char-
acteristics that they consider essential [1].
As a result, genes are compared based on
the most important aspects of their profiles,
and meaningful clusters are generated.

In addition to their many advantages,
feature-based algorithms also have signif-
icant flaws. For one, feature extraction
necessarily involves the loss of information.
Even if features are carefully chosen, there
is no way to ensure that feature vectors
will capture all of the important patterns
present in the data. Furthermore, as dis-
cussed in [42], with the development of a
feature-based algorithm comes the danger
of introducing bias into the data analysis.
The main goal of clustering gene expres-
sion data is to discover previously unknown
groups of co-expressed genes. By selecting
features based on patterns that they ex-
pect to observe in the expression profiles,
researchers may prevent the discovery of
unexpected patterns and similarities.

One simple way to reduce the chance
of losing important information or intro-
ducing bias is to cluster the data using a
variety of different feature sets. This so-
lution is certainly feasible since, as men-
tioned above, feature-based algorithms are
relatively fast. Furthermore, the underly-
ing code could be written so that updat-
ing the set of extracted features would re-
quire minimal changes. By examining the
clusters generated for several choices of fea-

ture sets, researchers would be more likely
to discover novel groupings of co-expressed
genes.

The ideal solution would be to de-
velop an algorithm that automatically se-
lects the optimal features from a large set
of previously defined candidate features. In
the machine learning literature, the var-
ious approaches to automatic feature se-
lection are categorized as either filters or
wrappers [43]. In the context of microarray
clustering methods, filters would use anno-
tated data (perhaps from the Gene Ontol-
ogy database) to choose the feature sub-
set that most successfully clusters together
groups of genes known to be co-regulated.
Wrappers, on the other hand, would apply
each possible feature subset to the data in
question and use the one that generated the
most internally valid clusters. Because the
latter task is extremely computationally de-
manding, filters are the more realistic op-
tion in the short term [47].

3.3 Shape-Based Similarity

A third and final class of discriminative al-
gorithms use the notion of shape to de-
fine their similarity functions. For instance,
Qian et al. [35] described an algorithm that
identifies profiles with a given shape as sim-
ilar, regardless of whether that shape is
time-shifted or inverted. Their procedure,
based on the Smith-Waterman algorithm
for local sequence alignment, assigns to
each pair of expression profiles a score and
a relationship: simultaneous, time-delayed,
inverted, or inverted time-delayed. The
score (weighted by the relationship, if de-
sired) can then be taken as a measure of
similarity and used for clustering the genes.

Several researchers have proposed im-
provements to the technique described
above. For example, Balasubramaniyan et
al. [2] developed a heuristic algorithm anal-
ogous to BLAST (Basic Local Alignment
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Search Tool) to speed up the process of find-
ing the maximal local alignment. He and
Zeng [20] incorporated concepts from fea-
ture extraction into Qian’s procedure; they
proposed that prior to alignment, gene ex-
pression vectors should be transformed into
“change trend” vectors containing the di-
rection of change in gene expression levels
for successive time points.

The major advantage of these shape-
based algorithms lies in their ability to iden-
tify as similar two expression profiles that
are shifted, inverted, or both. From a bio-
logical perspective, the shifted relationship
corresponds to one gene regulating another
or to one gene having a time delay in its
response to the same transcription factor.
The inverted correlation suggests that the
same regulatory mechanism activates one
gene and inhibits the other. By detect-
ing these important types of similarity that
other methods miss, these algorithms have
the potential to uncover new connections
among genes. Indeed, Qian et al. [35] re-
ported that their algorithm identified sev-
eral novel inverted and time-delayed rela-
tionships among yeast cell cycle genes, sug-
gesting that their shape-based approach has
promise for clustering other types of tempo-
ral microarray data as well.

There are a two simple ways in which
the shape-based algorithms could be im-
proved. For one, allowing penalized gaps in
the alignment is mentioned in [35] but not
implemented in any of the three procedures.
The inclusion of gaps would reduce prob-
lems caused by non-uniform sampling of
time points. Second, the algorithms could
more effectively capture profile shape by
utilizing techniques such as dynamic time
warping, which tolerates local stretching or
compression of one profile relative to the
other [22], and uniform scaling, which al-
lows for one entire profile to be stretched
relative to the other [15].

The main drawback of these shape-

based algorithms is that they are very com-
putationally demanding; the slow process of
finding the best local sequence alignment
must be performed many times to create
the clusters. The challenge for algorithm
developers is to design good heuristic ap-
proaches that make the search faster with-
out compromising too much accuracy, as
in [2].

4 Generative Algorithms

The fundamental idea motivating genera-
tive algorithms is that a finite set of pro-
cesses or models generate the gene expres-
sion data. Rather than directly measuring
the similarity between pairs of expression
profiles as do discriminative methods, gen-
erative algorithms use the data to deter-
mine the optimal parameters for the under-
lying models and then identify as similar
any profiles generated by the same model.

4.1 Template-Based

In template-based (also called template-
matching) algorithms, each gene expression
vector is placed into the cluster correspond-
ing to the particular “template,” or candi-
date profile, that describes it most closely.
Although template-based approaches have
much in common with the feature-based
methods described in Section 3.2, we clas-
sify them as generative algorithms because
they work not by measuring similarity be-
tween pairs of expression profiles but by as-
signing each expression profile to the can-
didate profile it matches best. Template-
matching algorithms differ from one an-
other primarily in the preprocessing steps
they apply to the data and in their method
for choosing the candidate profiles.

One of the early template-based algo-
rithms, which is also one of the most fre-
quently used, was presented by Peddada et
al. in [32]. The first step of their proce-
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dure is the definition of candidate inequal-
ity profiles, such as monotone decreasing or
cyclical, by the experimenter. The second
step utilizes statistical techniques to match
each expression profile to one of the candi-
dates or, if a unique significant match is not
found, to none of them.

Liu et al. [26] described a modified ver-
sion of Peddada’s algorithm that runs faster
and also provides a measure of cluster sig-
nificance for the researcher. Yi et al. [49]
updated Peddada’s algorithm to operate
not on the original gene expression vec-
tors but on discretized rank vectors instead.
They found that this adjustment led to im-
proved performance on data with high vari-
ability.

If the experimenter knows prior to the
data analysis step which expression pat-
terns he or she hopes to identify, then ap-
proaches like Peddada’s are appropriate for
creating gene clusters. However, in many
cases, the goal of clustering microarray data
is to identify new relationships among genes
based on unanticipated patterns and simi-
larities. In this case, it does not make sense
for an algorithm to use candidate expres-
sion profiles pre-specified by the researcher.

To address this issue, Moller-Levet et
al. [30] presented a template-matching algo-
rithm that does not require researchers to
enter candidate profiles. In the first step of
their method, each gene expression vector is
transformed to a “pattern vector” indicat-
ing the sign of change (increase or decrease)
for each pair of consecutive expression mea-
surements. The unique aspect of their pro-
cedure is that it includes every possible pat-
tern vector as a template profile. Each gene
is assigned to the cluster defined by its ex-
act pattern vector.

With this algorithm, researchers no
longer have to choose their own candidate
profiles. However, as time series get longer,
the number of template profiles and there-
fore the number of clusters becomes large

compared to the number of genes. For ex-
ample, suppose that Moller-Levet’s algo-
rithm were applied to time series data on
2000 different genes with 12 time points.
There would be 212−1 = 2048 clusters, so
the expected size of a cluster would be less
than one. Such small clusters are certainly
not conducive to the identification of groups
of co-expressed genes.

Clearly, both approaches discussed so
far (using experimenter-defined candidates
and using all possible profiles as candidates)
lead to significant problems. Ernst et al.
[13] avoided both types of issues by develop-
ing an algorithm that selects a reasonably-
sized yet still representative subset of all
possible expression profiles to use as tem-
plates. Because finding the best such sub-
set of a given size (where best is formally
defined as containing the profiles most dis-
tinct from one another in a pairwise sense)
is an NP-hard problem, Ernst et al. pro-
posed a greedy algorithm guaranteed to
find a good, though not necessarily optimal,
subset. The main drawback to this method
is that, as described in [13], the subset se-
lection algorithm is prohibitively slow given
a large space of possible profiles, which can
result from either a large number of time
points or a high level of detail in the ex-
tracted pattern vectors.

Overall, template-based methods have
compelling strong points. Because they
deal with pattern vectors rather than the
raw data, they are robust to noise [38].
They work particularly well for short time
series, which is important because, as noted
in [13], over eighty percent of all time series
in the Stanford Microarray Database con-
tain fewer than nine time points. As long
as the use of template-based algorithms is
restricted to short time series, the slowness
of the methods should not pose a problem.

The primary disadvantage of template-
based approaches is the same as that for
feature-based methods: the potential loss
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of information resulting from the transfor-
mation of the original expression vector
into a pattern vector. For example, none
of the template-based algorithms described
here retain information about second-order
change in expression measurements—a fea-
ture that could be useful in identifying co-
expressed genes. Addressing this issue is
not as simple as incorporating second-order
information into the pattern vector, since
such an increase in the complexity of the
pattern vector would introduce many more
possible templates and, as a consequence,
lead to significantly higher running time of
the algorithms.

The fundamental issue here is that a
good deal of information must be lost in
order to keep the space of possible tem-
plates sufficiently small. To exemplify
this concept, we consider a final template-
matching approach proposed by Liu et
al. [25]. Their method is unique in the
preprocessing procedure it applies to the
raw expression data. For a given profile,
rather than extracting information about
the direction of change between consec-
utive expression measurements, their al-
gorithm extracts a qualitative description
(such as “linear up,” “concave up,” or “con-
vex down”) of the quadratic regression that
best fits that profile. They have one tem-
plate, and consequently one cluster, corre-
sponding to each possible such description.
The main strength of this approach is that
it treats time as a continuous variable, mak-
ing it a good choice for time series with non-
uniform sampling. Unlike the methods pre-
viously discussed, this algorithm success-
fully takes into account the second-order
nature of the profiles; however, it does so at
the cost of losing many other details, such
as local patterns in the profiles.

The above example illustrates how any
template-matching algorithm suffers from
the loss of potentially important informa-
tion. One promising approach to address-

ing this problem is to combine template-
based methods with other types of cluster-
ing algorithms. For instance, temporal mi-
croarray data for thousands of genes could
initially be clustered by a template-based
procedure. The genes in a single resulting
cluster could then be further clustered using
a different algorithm which retains more in-
formation, like one of the shape-based pro-
cedures discussed in Section 3.3. This com-
bined approach would first group the genes
based on very general shared patterns and
then make further distinctions within any
individual group based on the more com-
plex aspects of the expression profiles. As
an added bonus, the slowness of the shape-
based algorithms would not be an issue be-
cause they would only need to run on a
small subset of the overall set of genes.

4.2 Model-Based

Much more so than the template-matching
clustering approaches discussed above,
model-based methods serve as quintessen-
tial examples of generative algorithms. As-
sociated with each model-based algorithm
is a form for the parametric models as-
sumed to generate the data. The algo-
rithms apply statistical techniques, often
some sort of expectation-maximization al-
gorithm, to obtain maximum likelihood es-
timates for the parameters of the models
[24]. Each model represents a single cluster,
and a given gene is placed into the cluster
corresponding to the model most likely to
have generated its observed expression pro-
file.

Not surprisingly, the defining feature
of a model-based clustering algorithm is
its choice of underlying models. Yeung et
al. [48], for example, developed a method
using multivariate normal distributions as
models for the gene expression data. Their
algorithm consists of two steps: the applica-
tion of the Bayesian information criterion to
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determine the appropriate number of clus-
ters, and the use of a standard expectation-
maximization algorithm to determine the
parameters of each of the normal distribu-
tions. Overall, their approach is not par-
ticularly effective for clustering time series
microarray data because, as noted in [31], it
completely disregards the temporal nature
of the expression profiles.

In [4], Bar-Joseph et al. presented a
different model-based algorithm more ap-
propriate for application to temporal data.
Their method models expression profiles us-
ing splines, which are essentially continu-
ous piecewise polynomial functions. Un-
like many of the methods previously dis-
cussed, this algorithm retains and utilizes
information about the duration of time be-
tween each sample. Consequently, it is
particularly appropriate for clustering non-
uniformly sampled temporal data. One ma-
jor drawback of Bar-Joseph’s method is its
requirement of the number of clusters as in-
put. Luan and Li [27] addressed this prob-
lem by developing a similar algorithm based
on spline models which automatically de-
termines the optimal number of clusters us-
ing the Bayesian information criterion. In
[28], Ma et al. described a way to signif-
icantly increase the speed of the spline al-
gorithms by making the maximization step
of the expectation-maximization algorithm
less computationally expensive.

Overall, while splines are good choices
of models in that they represent expres-
sion profiles as continuous, they also have
several serious downsides. For one, an al-
gorithm using spline representations must
pre-specify the number and length of the
“pieces” making up the splines [27]. These
specifications must either be made arbitrar-
ily, or else significant time must be spent
trying out different combinations of specifi-
cations to determine which give the best re-
sults. Unfortunately, both of these two op-
tions are problematic. Another issue with

spline representations is that they do not
work well for short time series, since ac-
curately fitting the spline model requires a
minimum number of about four time points
in each of the several spline segments [5,25].

In a much-cited paper, Ramoni et al.
[36] proposed an alternative type of model-
based algorithm for clustering time series
microarray data. As models, their method
uses first-order autoregressive equations, in
which each expression measurement is a lin-
ear function of the previous measurement.
The rationale behind their choice of model
is that autoregressive equations successfully
capture the ways in which expression mea-
surements depend on one another. To de-
termine the most likely set of autoregressive
models generating the data, their algorithm
utilizes an agglomerative Bayesian cluster-
ing approach. More specifically, it starts
by creating one cluster per gene and then
merges two clusters whenever doing so in-
creases the posterior probability of the set
of models given the data. In [46], Wu et
al. improved upon Ramoni’s method by
replacing the agglomerative search proce-
dure with a less computationally expensive
and more theoretically sound expectation-
maximization algorithm.

Autoregressive equations are apt mod-
els for time series data because they account
for the dependency of expression measure-
ments. However, unlike spline representa-
tions, autoregressive models disregard the
amount of time between samples, decreas-
ing their effectiveness for non-uniformly
sampled time series [31]. Furthermore, by
assuming that time series data are station-
ary (that is, that the mean and variance
stay constant over time [9]), autoregres-
sive models miss potentially important time
trends in the data [27].

A final group of model-based algo-
rithms make use of hidden Markov mod-
els (HMMs). Like autoregressive models,
HMMs account for the dependencies of gene
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expression levels. Schliep et al. [40] pro-
posed an approach in which each HMM
state has its own Gaussian emission proba-
bility distribution over possible expression
measurements. Their algorithm starts with
a number of HMMs describing “prototyp-
ical” expression patterns and then applies
an expectation-maximization algorithm to
find the maximum likelihood parameters for
the HMMs. Their method dynamically ad-
justs the number of HMM clusters by delet-
ing those with too few profiles and splitting
those with too many. Another interesting
feature of their approach is the inclusion of
what they call a “noise cluster,” essentially
a very general HMM that can generate any
possible profile, in case the initial HMMs
do not successfully represent some of the
observed profiles.

Ji et al. [21] developed another algo-
rithm for clustering time series data using
HMMs. Their method differs from that of
Schliep in two main ways. For one, their
procedure starts by converting each expres-
sion vector to a “pattern vector” consisting
of symbols for up, down, and no change like
those described in Section 4.1. This trans-
formation leads to a loss of information, but
it also simplifies the HMMs used. Rather
than requiring a continuous emission prob-
ability to be specified for each HMM state
as does Schliep’s algorithm, Ji’s method
only requires three emission probabilities
for each state.

The second major difference between
the two approaches is the method of se-
lecting the number of clusters. While the
determination of appropriate cluster num-
ber is built into Schliep’s algorithm, Ji et
al. choose the number of clusters through
what boils down to a trial-and-error proce-
dure; they run their algorithm for different
possible cluster numbers and choose the one
which produces the most internally consis-
tent clusters based on the “figure of merit”
metric. In this respect, Ji’s approach is at a

disadvantage because it requires an already
computationally intensive algorithm to be
run multiple times.

A general issue with approaches based
on HMMs is that they, like autoregressive
models, disregard information about how
samples are distributed in time and there-
fore may not be effective for use with non-
uniformly sampled data [31].

Overall, there are many convincing ar-
guments for using model-based algorithms
to cluster time series microarray data.
For one, these algorithms are based on
a sound theoretical foundation. Further-
more, clusters have clear interpretations;
experimenters can easily determine the sim-
ilarities among the genes in a given clus-
ter by examining the model correspond-
ing to that cluster. As noted in [48], the
statistical framework behind model-based
methods suggests a natural and sound way
to choose the correct number of clusters:
by using statistical criteria such as the
Bayesian information criterion. Perhaps
the most compelling advantage of model-
based methods is that they not only cre-
ate clusters but also provide experimenters
with a statistical measure of how well each
gene fits into its cluster and, if desired, into
any other cluster [14]. Such statistical mea-
sures enable “soft clustering,” whereby each
gene is assigned some degree of membership
(typically varying between zero and one) in
each cluster rather than being put defini-
tively into a single cluster [16]. Soft clus-
tering algorithms not only provide exper-
imenters with more potentially useful in-
formation about the relationships among
genes, but also tend to be more robust to
noise than so-called “hard clustering” algo-
rithms [16].

Unfortunately, like all of the other
types of clustering methods discussed up to
this point, model-based algorithms have a
few serious downsides. For one, the choice
of model introduces a great deal of bias
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into the clustering results and restricts the
type of similarities that can be identified
among genes. For each of several different
choices of models (including splines, autore-
gressive equations, and HMMs), there are
compelling arguments as to why that par-
ticular model is suitable for temporal mi-
croarray data. However, there is no defini-
tive way to show in general that a given
model describes time series gene expression
data more accurately than another. As a
result, it is difficult for experimenters to
know which models to select to analyze
their data. As discussed in Section 3.2 in
the context of feature-based algorithms, one
possible way to deal with this problem is to
try clustering the data using several differ-
ent models and see if any of them identify
interesting new relationships that merit ad-
ditional investigation. In Section 5, we dis-
cuss this possibility further.

A more concrete problem with model-
based algorithms is that the search for the
optimal model parameters can be very com-
putationally demanding, particularly for
models like HMMs with many parameters.
Fortunately, a number of fast yet reason-
ably accurate stochastic versions of the
expectation-maximization algorithm have
been proposed in the general cluster anal-
ysis literature [8, 14], and these modifica-
tions could be used to increase the speed of
any model-based gene expression clustering
method if desired.

5 Combined Methods

One clear conclusion that can be drawn
from the preceding review is that, for the
purpose of clustering time series microar-
ray data, no one method is definitively bet-
ter than all others. Each algorithm relies on
some assumption of what makes expression
profiles similar and is therefore limited by
that assumption in terms of the similarities
it will identify and the clusters it will form.

A naive approach to avoid being lim-
ited by a single assumption is to apply a
number of different clustering algorithms
to the data. Since the overall purpose
of clustering expression data is to discover
new and unexpected groups of co-expressed
genes, it seems that trying out more clus-
tering algorithms can only improve the use-
fulness of the results [6]. This reasoning is
generally valid, but it has a few flaws. First,
the clustering algorithms discussed here re-
quire a significant amount of time and com-
putational resources, so running several or
many of these algorithms is often not a fea-
sible option.

Besides this practical consideration,
there is a more fundamental flaw in the ap-
proach of applying a large number of clus-
tering algorithms: it has the potential to
overwhelm the experimenter with excessive
information. Recall that the broad goal of
clustering (and, for that matter, data anal-
ysis in general) is to get from huge amounts
of raw data that a human brain cannot pos-
sibly process to a manageable summary of
the important patterns and relationships in
that data. This goal will not be achieved if
the experimenter has to consider and syn-
thesize too many different sets of clusters.

In light of these considerations, there is
a need for a way to run various clustering
algorithms on the same data set—thereby
taking advantage of all of their strengths
and minimizing the total amount of infor-
mation lost—yet still present the experi-
menter with a clear and manageable sum-
mary of the results. We propose the de-
velopment of a software tool for this pur-
pose. This tool would take raw gene expres-
sion data as input from the user and run
several diverse clustering algorithms with
complementary strengths on that data. In
general, a good set of algorithms should
include a feature-based generative algo-
rithm, a shape-based generative algorithm,
a model-based algorithm that represents
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the profiles as continuous functions (such as
splines), and a model-based algorithm that
accounts for the dependencies in the data
(such as autoregressive models or HMMs).
Of course, there are many possible ways
to choose which particular algorithms the
tool would use, and making the best choices
would require a thorough evaluation of the
algorithms in terms of both running time
and quality of results. One possibility is
that the tool would utilize characteristics
of the data itself—such as whether it is
uniformly sampled and whether there are
many or few time points—to choose the
best set of algorithms to run.

The most important feature of this
software tool would be a method of syn-
thesizing, summarizing, and visually dis-
playing the results of the various algo-
rithms. One straightforward way to accom-
plish this synthesis step would be to per-
form a simple hierarchical meta-clustering
of the genes, whereby the similarity of two
genes would be defined by how many times
they were clustered together by the vari-
ous algorithms used. The user could select
different tabs that would show him or her
the meta-clusters as well as the clusters pro-
duced by any of the individual algorithms.
Overall, this tool would give experimenters
a simple way to benefit from the strengths
of several different clustering approaches,
making them more likely to obtain useful
results.

6 Conclusion

In the past decade, hundreds of cluster-
ing algorithms have been developed partic-
ularly for application to time series microar-
ray data. In one sense, the abundance of
methods is positive for experimenters since
it gives them many good options in se-
lecting an algorithm. On the other hand,
the existence of so many different cluster-
ing procedures makes choosing the appro-

priate one difficult, especially given that
each algorithm has its own set of often sub-
tle assumptions and works best for data
with particular characteristics. Hopefully,
reviews such as this one will provide re-
searchers with information that will allow
them to choose the algorithm most effec-
tive for their data, ultimately leading them
to uncover new patterns of co-expression
among genes and make important biolog-
ical discoveries.
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